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Reinforcement learning (RL), a subfield of machine learning, can train autonomous agents to | Abstraction (Sec. 4.2) |
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in safety-critical applications. Moreover, these agents often learn behaviors that are inexplainable
and unpredictable to humans.
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Our method, CAPS, 1s a tool that can be used to analyze agent behavior and safety 1n critical NETESers

situations. It can also be used 1n manual inspection, model checkers, or statistical analysis to

elucidate the behavior of the underlying RL system:s. DlVQrSlty for Adaptlve Safety for RL (DAS-RL)[Z]
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