
Design of Privacy Preservation System in Augmented Reality
Yoonsang Kim, Saeed Boorboor, Amir Rahmati, and Arie E. Kaufman, Fellow, IEEE *

Stony Brook University

ABSTRACT

Augmented Reality (AR) capability to overlay virtual data on top of
real-world objects and enable better understanding of visual inputs
attract the attention of application developers and researchers alike.
However, the privacy challenges associated with the use of AR systems
is not sufficiently recognized. We present Erebus, a privacy-preserving
framework designed for AR applications. Erebus allows the user to
establish fine-grained control over the visual data accessible to AR
applications. We explore use cases of Erebus framework and how it
can be applied to safeguard the privacy of the user’s surroundings in
AR environments. We further analyze the latency penalty imposed by
Erebus to understand its effect on user experience.

Keywords: Augmented Reality, Augmented Reality Security, Privacy
Preservation, Collaborative Augmented Reality, Unity

Index Terms: Human-centered computing—Human computer interac-
tion (HCI)—Interaction paradigms—Mixed / augmented reality; Secu-
rity and privacy—Software and application security—Social network
security and privacy

1 INTRODUCTION

The field of Augmented Reality has experienced unprecedented growth
in recent years. This growth has led to an increasing concern regarding
the security and privacy of these platforms [4]. There has been multiple
attempts to manage the privacy challenges of AR applications. The
work by Hu et al. [5] suggests the need to access-control the permission
of AR applications on the client’s device. This work isolates the
permission of each installed application by adding a control layer within
the client’s device. This way, the system can enforce privacy-safe data
communication between the applications and the system of device.
The work by David-John et al. [3] proposes an approach to cipher
the gaze data that are commonly used in many AR applications. This
work suggest two approaches: (1) Adding a privacy safeguarding layer
between the application and the operating system of a device, and (2)
Resampling/adding noise to the original data. The latter method is
typically used for applications that require full access to the original data.
As these two works show, AR applications suffer from ‘All-or-nothing’
property. They need a complete access to the user’s surroundings in
order to overlay data on top of physical world objects. To protect users
from unwillingly disclosing their privacy, we introduce Erebus. Erebus
focuses on the privacy of camera inputs on client’s device and enables
fine-grained control over the camera inputs accessible by the application.
Our insight is that, to achieve their functionality, most AR applications
only need access to a subset of components in the field of vision. Erebus
works by obscuring the parts of input camera superfluous to application,
allowing external applications to access only a subset of camera
input required for their functionality. This is achieved by creating a
permission model that allows applications to define their required data,
establishing a privacy preservation policy for the camera data.

*E-mail:{ yoonsakim,sboorboor, amir, ari} @cs.stonybrook.edu

2 PROBLEM STATEMENT

We suggest a scenario where a serious threat can be introduced. Any
two or more clients with AR applications connected through network.
An AR video chat application is a good example to illustrate the
case. The application which heavily relies on real-time video data
synchronization and communication.

Scenario: There is a possibility of a threat actor collecting data in
between network-connected clients or eavesdropping data as a malicious
remote client. To be specific, the malicious actor may obtain the private
data of clients from their video camera inputs. However, we assume that
the integrity of internal network security for the sender client is not com-
promised. In other words, the threat can only exist on two locations: The
external network path of clients and at the receiving remote client-side.

3 SYSTEM DESIGN

Our base approach to solve the privacy exposure is by letting the
sender clients process the privacy-sensitive information themselves. As
illustrated in Figure 1, the client system is responsible for obscuring
any privacy-sensitive data on its side before any data leaves the client’s
AR device. This approach can readily solve our threat scenario because
the only data the attacker can acquire is the obscured data.

Figure 1: Architectural overview of Erebus and its four main steps

Whitelisting: As depicted as Step 2 in Figure 1, a client maintains a
list of object names to be classified as ‘Public’ type objects. Objects that
are not contained in this list are obscured and considered as ‘Private’ type
data. We chose to utilize the concept of ‘Whitelisting’ over ‘Blacklisting’
approach because Blacklisting requires full annotation and complete
understandings of the client’s surroundings. It is vulnerable to unseen
objects for the object classification model. Unlike the Whitelisting
approach which views any unidentified objects as Private type objects,
the unseen objects will recognize as Public type data and be displayed
to other clients. In a real-world scenario, stationary objects with not only



Figure 2: Concept visualization of three different privacy preservation
methods: Whitelisting (Left), Blacklisting (Middle), Whitelisting with
instance segmentation (Right). These conceptual figures were generated
using YOLACT++ [2]

clear boundaries, but also vaguely-defined boundaries such as a wall,
a parking lot, and scenery exist. Thus, it is difficult to maintain a list of
all the blacklist objects of an input scene. Moreover, failing to obscure
the background scene of an input may provide enough context to a
malicious actor to infer a few missing data. The concept visualization
of Whitelisting and Blacklisting approaches are shown in Figure 2.

Data Obscuring: We obscure user’s data before it is transmitted to a
remote client. Our data obscure method is performed on bounding-box
of each object. To achieve this, we utilize deep learning-based object
detection model. The raw camera input from an AR device is fed into
the object detection model and its classified result is compared with
the whitelist. If the object is classified as Private, we obscure the object
so that is safeguarded from being displayed to a remote client. Any
surrounding environment displayed in the raw input data is masked out
except the Public type objects. This way, the clients are able to control
their privacy and keep their private data within their local systems while
publicly streaming their video camera inputs to other clients.

Task Partitioning: Mobile AR devices yet lack the ability to
compute heavy computer vision tasks such as executing a deep
learning-based object detection model. Thus, we devised of adding a
trusted device with superior computation power to the sender client’s
local network. This device will act as a local processing server for
heavy-duty object detection allowing the AR device to concentrate only
on data obscure and network communication with the remote server.
This is illustrated as Processing server in Figure 1.

System Transferability: A platform-specific system is limited in
execution environment flexibility. We utilize Unity [7] game engine
as the client environment so that our application can be used across dif-
ferent AR-capable devices (e.g., Hololens, Smartphones). Also, because
we receive the result of the detected objects from an external device
via network, as long as the bounding box format ({label, confidence,
bottom left pos x, bottom left pos y, bbox width, bbox height}) is
consistent, the object detection model can easily be replaced to another.

4 IMPLEMENTATION

This section elaborates on the concepts and the algorithms mentioned
in Section 3 and their implementation details.

Local Processing Server: For the sake of responsive real-time AR
application, we utilize a one-stage object detector, YoloV4 [1]. Once
a JPG formatted image is received from the client, it detects objects
and sends the bounding box of each object to the client.

Client: Client extracts the camera input and encodes it to a JPG
format to transmit to the local processing server. When the result returns
back from the local server, the client integrates the bounding box data
with the current frame of the camera input.

Networking: We use Python ZeroMQ [6] for our networking
module. It supports both C# and Python and we use its TCP/IP protocol
to interact with the processing server and the client.

5 PERFORMANCE ANALYSIS

We analyze the latency of each step to identify the performance
bottleneck of the application. Our study, shown in Table 1, indicates

that the most amount of time was consumed in the Networking
step followed by the Object detection step. The remaining steps
contributed 4.3% (Mean:13.4ms) to the total consumed time. The
time consumed on Whitelisting step was negligible as it is simple
string comparisons of returned results from the object detection model.
Our test was performed under the TCP protocol, wireless network
(Download:16.18Mbps, Upload:21.61Mbps), and consumer-level server
hardware specs (NVIDIA GTX 960, Intel i5-8400, 16GB).

Table 1: Time consumption analysis per step (ms)

Trial COM DCOM NET DET PAR WL TOT
1 10 2 170 130 1 <1 313
2 10 3 158 125 1 <1 297
3 7 2 160 129 1 <1 299
4 12 4 171 126 <1 <1 313
5 9 3 169 126 1 <1 308

COM: Image compression; DCOM : Image decompression;
NET: Time spent on networking–send/recv–with processing server;

DET : Object detection/classification; PAR : Parse object detection result
WL: Time spent on Whitelisting; TOT: Total consumed time

6 EXPERIMENTS

We tested the performance of mobile version of YoloV4, YoloV4-tiny,
on an AR-capable mobile device (Samsung Galaxy S8) using Unity
Barracuda. There was a significant gain in the speed, but the trade-off
between the detection accuracy was not negligible. This was expected
result according to the speed/accuracy comparison by Bochkovskiy et
al. [1], YoloV4-tiny is 62% less accurate than YoloV4 detection model.
Since it is crucial for our framework to correctly whitelist the detected
objects, we tentatively crossed out this option in this study.
Another experiment was modifying the privacy preservation method.
Instead of using solid black color to obscure information, we blurred
the original input by applying a box filter and a noise texture. However,
this required multi-pass rendering, adding an additional latency.

7 CONCLUSION AND FUTURE WORK

We proposed our preliminary research, Erebus, a framework to
safeguard a user’s privacy in AR environment. Our concept accentuates
the importance of privacy preservation in AR applications and presents
a crucial element to be considered in the AR development amidst the
recent upswing trend of AR. For future works, we plan to improve our
framework so that it can be applicable to real-time AR applications with
acceptable magnitude of latency. Also, we expect to develop example
applications to demonstrate our concept.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research Award No.
N00014-20-1-2858.

REFERENCES

[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed
and accuracy of object detection. arXiv preprint:2004.10934, 2020.

[2] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee. Yolact++: Better real-time
instance segmentation. arXiv preprint arXiv:1912.06218, 2019.

[3] B. David-John, D. Hosfelt, K. Butler, and E. Jain. A privacy-preserving ap-
proach to streaming eye-tracking data. IEEE Transactions on Visualization
and Computer Graphics, 27(5):2555–2565, 2021.

[4] J. A. De Guzman, K. Thilakarathna, and A. Seneviratne. Security and
privacy approaches in mixed reality: A literature survey. ACM Computing
Surveys (CSUR), 52(6):1–37, 2019.

[5] J. Hu, A. Iosifescu, and R. LiKamWa. Lenscap: split-process framework
for fine-grained visual privacy control for augmented reality apps. In
Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 14–27, 2021.

[6] iMatix. ZeroMQ, July 2021.
[7] Unity Technologies. Unity, July 2021.


	Introduction
	Problem Statement
	System Design
	Implementation
	Performance Analysis
	Experiments
	Conclusion and Future work

