V3SPA: An IDE and Visualization Environment for SELinux Security Policy
Abstractions

Robert Gove, Christopher Wacek, Matthew Oertle, Jeffrey Karrels
{robert.gove, christopher.wacek, matthew.oertle, jeff.karrels}@invincea.com
Invincea Labs

ABSTRACT

SELinux policies have enormous potential to enforce granular secu-
rity requirements, but the size and complexity of SELinux security
policies makes them challenging for security engineers and analysts
to determine whether the implemented policy meets an organiza-
tion’s security requirements. To address the challenges in develop-
ing and maintaining SELinux security policies, we are developing
V3SPA (Verification, Validation and Visualization of Security Pol-
icy Abstractions). V3SPA creates an abstraction of the underlying
security policy using the Lobster [3] domain-specific language, and
then tightly integrates visualizations of the policy abstraction with
an IDE for editing the underlying policy and visually seeing the
changes in real time. We describe the current state of the V3SPA
system, and discuss our future research goals.

1 INTRODUCTION

As system complexity has increased, security goals have become
incomprehensible at the implementation and configuration levels
of an operational environment. To secure modern enterprise sys-
tems, the ability for security professionals to abstractly define and
visualize the overall security policies of the system is essential to
understanding and verification. While some tools exist to imple-
ment the system security policies themselves, the complexity of
operational systems clutter the ability of security engineers to map
security goals to proper system configurations, thus leaving a high
probability of security errors. Furthermore, as system complex-
ity increases, so does the difficulty in assessing differential system
modifications without requiring a ground up re-verification.

Past research on security policies has focused on algorithmic and
visual techniques for identifying information flow in security poli-
cies [1] [6], or techniques for grouping types in the security policy
graph to simplify the analysis [4].

We propose a novel system to address the challenges faced by se-
curity engineers and analysts. In the same way that modern scooters
are designed with a complete enclosing that covers the underlying
complexities of the engine, V3SPA abstracts away the complexi-
ties of SELinux security policy development. V3SPA is an inter-
active visualization and security policy development environment
built on top of the Lobster domain-specific language [3]. V3SPA is
an on-going research project, and we report on its current state of
development, as well as our research goals in the next phase of the
project.

2 V3SPA DESIGN

V3SPA is a web-based IDE for exploring security polices, with
three main user interface components: (1) the editor pane, which
contains interface controls and a fully featured IDE; (2) the visu-
alization workspace allows users to explore security policies inter-
actively; and (3) the console displays logging and error messages.
See Figure 1 for a screenshot of the interface.

From the editor pane, users can select a visualization to dis-
play in the visualization workspace, view the source files, view and
edit the Lobster DSL abstraction of the security policy, and save
or export modifications to the security policy. The visualization
workspace shows a visual representation of the security policy ab-
straction. Users can interact with the visualization by hovering over
visual elements to see tooltips, zooming and panning, or filtering
out some of the data. The visualization updates in real time as users
edit the security policy in the editor pane. Finally, the console at the
bottom of the screen displays logging information and errors when
there are problems parsing the security policy.

Currently, V3SPA includes three visualizations of the abstracted
security policy:

1. The summary visualization displays SELinux types and ob-
ject classes, and connections between then represent permis-
sions (see Figure 1. Users can filter the permissions by click-
ing “Active Permissions” or“Permitted on”, which also hides
corresponding types that are no longer connected to anything.

2. The structured view shows a hierarchical interactive visual-
ization to explore the policy (see Figure 2. Object classes
are drawn within object types, and connections representing
permissions are drawn from subject types to object classes in
subject types.

3. The module view displays the module hierarchy in an icicle
tree. Similar to the structured view, connections are drawn
between object classes underneath types, indicating permis-
sions.

In all visualizations, users can right-click on a type or connection
and click ”Show code”, which highlights the security policy code
in the editor pane that corresponds to the selected security policy
element.

3 FUTURE WORK

As we move forward with the research and development of V3SPA,
we have identified several research goals for the next phase:

Enhanced Visualizations We will enhance the current visualiza-
tions in V3SPA to support security engineers and analysts in
their complex analysis tasks. As part of this, we will add more
dynamic query mechanisms to improve V3SPA’s interactivity,
and we will design new visualizations to form a cohesive suite
of analysis tools.

Raw SELinux Policies We will add a plug-in for V3SPA to also
display raw SELinux security policies. Although there are
advantages to using policy abstractions, such as the Lobster
DSL, some analysis challenges are best met by analyzing the
raw SELinux security policy.

Visual Policy Diffing We will build a plug-in to perform visual
policy diffs between two security policies. Assessing differen-
tial system modifications is challenging due to the large size

V3SPA Reference Policy: xen (switch)

xen >
Save || Export [View module f . xen.quirk is permitted on xen.xen_t
xen.domO_t has permission xen.quirk
Visualizer Type
Summary | Structured =~ Module
Visibility Unused Ports @>
dsl
1 explicit class Domtrans_pattern(d2_name) °er: gy
2+ { s g
= port dl_active : { position=object }; «s,,f’“’%u,;;
4 port dl_fd : { position=subject }; *mif"“%y
5 port dl_fifo_file : { position=subject }; - dﬂ::"e
6 port dl_process : { position=subject }; xsn,,e::nﬂ ‘c:'
7 port del'lg o poslt}ov:subje_ct s X, ::ulf,,/
8 port d3_active : { position=object }; Xen.secupy, |
9 port d3_process : { position=subject }; L Xen.nic_dey
) en.solated_domy ¢ ger
S xen.isolated_domu_t
11~ [Perm("file", aahirad
12 "getattr"), xen.oport_t -
13 Perm("file", xen.iomem_t
14 "oben"). son gomm,‘l'
wsef
xendomVA-=2
om0 LT
e et
Ly
A
o0 ‘»-:L\ce‘
=T
Console
Time Severity Domain
Sep 18, 2015 9:52:20 AM [info | policy
Sep 17, 2015 10:48:35 AM [info | policy

©2014 Invincea Labs

Permitted on
et oP
e
e
irp s
domed .
Jomain2 setschedule”
domain2.settsS
event.bind
event.create
avent send
event.status
9t cop,
Srant o
Oy P
Irang, Py
gy Py
g, >
oy,
%0
A,
RS
Message
Loaded Reference Policy: xen +
Loaded Reference Policy: minimal +

Figure 1: The V3SPA user interface. On the left, the editor pane shows the Lobster DSL representation of the security policy. On the bottom,
the console displays logging and error messages. In the middle is the visualization workspace, which allows users to explore security policies
interactively (the “Summary” visualization is shown here, which shows relationships between permissions, types, and object classes). Users

of many security policies and assessing modifications often
requires a ground up re-verification of the entire policy. Other
researchers have explored visualizing comparisons between
trees (e.g. TreeVersity [2] and TreeJuxtoposer [5]), but there
has been relatively little work on comparing large graphs, like
those seen in security policies. We will explore various tech-
niques for visually diffing security policies.

Isnatea_domu_tseit sety_s 3

domu_t s 32

domo_i_sar 37

solated_som__chamel 3 srant

domain_tvoe

rre—

domuen s 37
(— domo_c_cnamnat 32

resource_typs 3

wotted domo_t 32
doman_seit_ye 32

Figure 2: The Structured view in V3SPA shows object classes, and
draws connections between object classes, indicating which types
have permissions on which classes in other types. Users can ex-
pand or collapse a type (the blue rectangles) to see which types have

permissions on object classes in that type.

REFERENCES

[1] P.Clemente, B. Kaba, J. Rouzaud-Cornabas, M. Alexandre, and G. Au-
jay. SPTrack: Visual Analysis of Information Flows within SELinux

(2]

3

—

(4]

(31

(6]

Policies and Attack Logs. In International Conference on Active Media
Technology, pages 596—-605, 2012.

J. A. Guerra-Gomez, M. L. Pack, C. Plaisant, and B. Shneiderman.
TreeVersity: Interactive Visualizations for Comparing Hierarchical
Datasets. In Transportation Research Board, 2013.

J. Hurd, M. Carlsson, S. Finne, B. Letner, J. Stanley, and P. White. Pol-
icy DSL: High-level Specifications of Information Flows for Security
Policies. In High Confidence Software and Systems: HCSS, 2009.

S. Marouf and M. Shehab. SEGrapher: Visualization-based SELinux
policy analysis. In Configuration Analytics and Automation, pages 1-8,
2011.

T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou.
TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with
Guaranteed Visibility. In SIGGRAPH, 2003.

W. Xu, M. Shehab, and G. J. Ahn. Visualization-based policy analy-
sis for SELinux: Framework and user study. International Journal of
Information Security, 12(3):155-171, 2013.

