NAVSEC: A Recommender System for 3D Network Security Visualizations

Troy Nunnally
Kulsoom Abdullah
A. Selcuk Uluagac
John A. Copeland
Raheem Beyah

October 14, 2013
CAP Group, School of ECE
VizSec 2013
Outline

1 Introduction
2 Related Work
3 Design
4 Evaluation
5 Conclusion
Convert this...

Textual network traffic for Tcpdump tool.
Into this.
Source IP confusion

2D Parallel Coordinate System
Visualization Challenges

Add Interactions to 2D visualizations

Introduce interaction techniques such as *linking and brushing*.

Expand the visualization space

Add the *z-direction* (i.e., 3D) to allow more information to be visualized vs. its 2D counterparts.
Add Interactions to 2D visualizations

Expand the visualization space

Many of today's network security applications require a user to perform many interactions within a UI.

Introduce interaction techniques such as color, linking, brushing.

Add the z-direction (i.e., 3D) to allow more information to be visualized vs. its 2D counterparts.
Visualization Challenges

- A large number of interactions could overwhelm or confuse a novice user.

- Finding visualization steps to complete critical tasks becomes difficult to accomplish and could take years to master.

- The more complex visualizations become, the more visualizations become difficult to navigate.
The objective of this work is to help network administrators navigate through complex visualizations and assist in searching for advanced network attacks.
Motivation

Visualization Goal

Visualization from an expert
Visualization from an active user
Recommend next interaction
Interaction Path
As a new administrator, you may need guidance to help you find existing or new attacks.

- Network Administrator of Companies
- Military Personnel
- Education/Training
Outline

1. Introduction
2. Related Work
3. Design
4. Evaluation
5. Conclusion
Searching takes time and effort. Also, finding specific uses of visualization tool of attacks is difficult.

Ask an expert.

Experts cost time and money. Plus, he/she may not always be present.
Related Work

- Recommender systems (e.g., Netflix and Amazon) are used in recommending products and services.

- *Community Command* [16] recommend a single interaction for software applications such as AutoCAD.

- *NIMBLE* [21] calculates the similarity for given IDS alerts and historical alerts.

To our knowledge, no work has been done in developing a recommender system to help a novice user make intelligent decisions about network attacks in 3D visualization applications.
Outline

1. Introduction
2. Related Work
3. Design
4. Evaluation
5. Conclusion
System Overview

- **Active User** - individual navigating the visualization tool.

- **Expert User Community** - a set of users with significant experience in the network security and visualization fields.

- **Interaction Database** - a collection of interaction sequences.

- **Recommender** - parses the data computes a set of interactions for recommendation to an active user in real-time.
We apply recommendations of interactions so that the user could navigate through the visualization more effectively.
Recommendation Engine

1. Formulate an interaction vector v_k

$$v_k = [n_0, n_1, \ldots, n_{J-1}]$$

where $n_j = \sum_{i=0}^{I-1} i_j$ for attack session s_k.

$V_k = \text{interaction vector for an attack sessions } s_k$

$n_j = \text{interaction type (zoom, rotate, etc.) for an attack sessions } s_k$

2. Create a Similarity Matrix M

$$M_k = \cos(v_k, v_h) = \frac{v_i \cdot v_h}{\|v_i\| \times \|v_h\|}$$

$v_k - \text{Active users}$

$v_h - \text{Expert users}$

$M_k - \text{similarity matrix}$

3. Recommend a set of interactions

Recommend interaction sequence with the highest similarity score.
NAVSEC server uses an Application Programming Interface (API) to receive HTTP requests.

NAVSEC API uses Model-View-Controller architecture design to assist in code reusability.

NAVSEC server could act as a centralized database for multiple active user clients.
NAVSEC contains a client-side C++ component which is integrated as a module of FRE3DS to send GET HTTP request of interactions to the server-side application.

Concurrent FTP transfer
Concurrent FTP transfer
Disguised Port Scan Attack
Convergence Test

- 5 Sessions from an active user.
- 40 interaction vectors from expert users.
- 30 types of interaction types (e.g., zoom out, zoom in, rotate, add left plane, add line glyphs).

These results suggest that with the use of NAVSEC, visualizations for the P3D tool converges towards an expert user’s interaction set.
Outline

1. Introduction
2. Related Work
3. Design
4. Evaluation
5. Conclusion
NAVSEC uses advanced data mining techniques to recommend interactions.

NAVSEC is useful for assisting novice users in navigating 3D visualizations.

Our results show that NAVSEC can converge to a meaningful visualization performed by a user.
The future work includes:

- Implementation and evaluation of more advanced use-case scenarios (i.e., introduce benign traffic).
- User testing.
Thank You

Troy Nunnally
Troy.Nunnally@gatech.edu