Visualizing Host Traffic through Graphs

Eduard Glatz
Computer Engineering and Networks Laboratory
ETH Zurich (Switzerland)
eglatz@tik.ee.ethz.ch
Motivation

- Research in behavioural host profiling and cyber security
 - How can we build easily interpretable host profiles and evolve them?
 - Is this IP address a server or a client?
 - What services is this IP address providing?
 - Why does a host experience one-way flows?

- Teaching/Training
 - How do Berkeley sockets work?
 - What activity does a complex communication pattern represent?
How to represent Host Traffic?

Idea: *use graphs*

- Nodes correspond to flow attributes
- Links show flow attributes that appear together
- Result: *very dense/noisy graph*

Problem:
- Which relationships are most interesting to illustrate?

Transactions:
- \(w_1, x_1, y_1, z_1 \)
- \(w_2, x_1, y_1, z_2 \)
- \(w_3, x_1, y_2, z_1 \)
- \(w_3, x_1, y_2, z_2 \)

Example mapping to flow records:
- \(w \): source IP
- \(x \): destination IP
- \(y \): source port
- \(z \): destination port
Transaction Visualization by k-Partite Graphs

Approach:
- K-partite graphs plus abstraction, e.g.

Transactions:
- w1, x1, y1, z1
- w2, x1, y1, z2
- w3, x1, y2, z1
- w3, x1, y2, z2

Abstraction:
- Purge blue lines and re-arrange partitions as needed to keep links which are important to identify offered services and host roles
Host Application Profile (HAP) Graphlet

We propose: Host traffic visualization through a 5-partite graph

- Terminology: local/remote instead of source/destination
- Annotations on nodes and links (not shown in example)
What Graph Structures can we expect?

Most prevalent host roles:

- **a) server**
- **b) server (par. connections)**
- **c) client**
- **d) multi-client**
- **e) p2p (1)**
- **f) p2p (2)**
- **g) p2p (3)**

TCP + UDP
Need for Summarization

- Ideally, a HAP graphlet fits into available screen area
- But …
Host Role Summarization

Idea:
- Compress *per-role subgraphs*

Prequisite:
- Roles can be associated with sub-graphs

Methodology:
- Decompose graphlet into role-related subgraphs
- Replace role-related sub-graphs by summary sub-graphs
 - Decomposition and replacement algorithm depends on role types (server/client/p2p roles)
Examples of Role Summarization

Server role

Client role
Flow Classification and Filtering

- Regular applications use bidirectional communication to acknowledge received data
- Done on transport layer (TCP) or application layer (UDP)
- Idea: differentiate one- and two-way flows
- Methodology:
 - Pair unidirectional flows in opposite direction that use identical endpoints
 - Look “over the fence“ (i. e. observation interval borders) when searching a buddy for a within-interval unidirectional flow
Role Summarization and Filtering

Example:
Real-world data: 1082 flows, 48722 packets, 107 one-way flows filtered
The Tool: HAPviewer

- Stand-alone Unix/Linux application with GUI
- Additionally, program library for integration into powerful network monitoring frameworks

Typical use cases:
- Qualitative studies of roles incorporated by hosts
- Interpretation of complex connection structures
- Identifying unknown service ports
- Investigation of a host marked as suspicious by IDS/firewall alerts
- Teaching of Berkeley socket model
Conclusions

- Graph-based host traffic visualization
 - Provides an analyst a quick and easy interpretable overview of host activities involving hundreds or thousands of flows

- Tool HAPviewer
 - Available as open source from http://hapviewer.sourceforge.net
 - Two versions: stand-alone GUI application and program library

- Outlook:
 - Integration into NfSen monitoring framework (project started)
 - Usability studies involving security professionals
 - Correlation of security alerts with host profile changes
Questions?