
Multi-layer Onion-ring Visualization of Distributed Clusters
for SmartX MultiView Visibility and Security

Jun-Sik Shin* Muhammad Usman† JongWon Kim‡
School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology, Republic of Korea

ABSTRACT
To smoothly operate a cloud testbed-style playground of
SDN-enabled distributed clusters, we need a promising
solution to collectively monitor distributed clusters in a
unified manner that can embrace multiple layers of
physical and virtualized resources and inter-connecting
flows. Also, it is required to detect various security
attacks that exploit the widened attack surface due to
virtualization and containerization. Thus, by leveraging
multi-layer visibility framework denoted as SmartX
MultiView Visibility Framework (MVF) [1], we are
currently establishing a security extension of SmartX
MVF. However, current tree-style visualization
associated with SmartX MVF is not intuitive enough to
accommodate the complicated dependencies for multi-
level security extension. Therefore, in this paper, an on-
going realization of multi-layer onion-ring visualization
is introduced that can support multi-level visibility
points for collecting visibility data from multiple layers.

Keywords: Unified monitoring, multi-layer visibility,
measurement and tracing, and security analysis with visibility data.

1 INTRODUCTION
With OF@TEIN Playground [2], we have been operating
several testbed-style playgrounds that allow operators
and developers to conduct customized testing
environment for SDN and cloud research. To smoothly
operate a cloud testbed-style playground of SDN-
enabled distributed clusters, we need a solution to
collectively monitor distributed clusters in a unified
manner that can embrace multiple layers of physical
and virtualized resources and inter-connecting flows.
This kind of unified monitoring (e.g., multi-layer
visibility) is promising in reducing service outages and
operating costs. With it, we can facilitate the
performance and availability of heterogeneous physical
and virtual resources, inter-connected by legacy and
SDN-enabled networks. Also, it is required to detect
various security attacks that exploit the widened attack
surface due to virtualization and containerization. Thus,
in this paper, by leveraging multi-layer visibility
framework denoted as SmartX MultiView Visibility
Framework (MVF) [1], we are currently establishing a

security extension of SmartX MVF.

By supporting multiple security levels over SmartX
MVF multi-layered visibility effort [1], we propose
multi-level security extension to ultimately detect
hidden vulnerable points. Current tree-style
visualization associated with SmartX MVF is not
intuitive enough to accommodate the complicated
dependencies for multi-level security extension. It is
inefficient in showing both multi-layer and multi-level
visibility together on a single-view visualization.
Therefore, in this paper, an on-going realization of
multi-layer onion-ring visualization is introduced that
can support multi-level visibility points for collecting
visibility data from multiple layers.

2 CONCEPT DESIGN

2.1 Security Extension of SmartX MVF

Distributed clusters typically consist of clustered
SmartX Boxes, which basically include multiple levels of
hardware and software components (mostly due to
hierarchical interaction among computing, storage, and
networking components). So, for improved visibility and
security operation, it would be nice to have multi-level-
aware visibility points. With this, later, we can associate
the security level to the multi-level visibility points. To
enable this kind of multi-level visibility points
systematically, as explained earlier, we leverage SmartX
MVF by aligning multi-level visibility points with
multiple SmartX MVF layers for underlay, resource
(physical and virtualized), flow, and workload.

2.2 Onion-ring Visualization
Currently, SmartX MVF provides an interactive
visualization dashboard for playground topology,
resource status, and limited flow information. The
topology visualization is in a tree-style view focusing on

* e-mail: jsshin@nm.gist.ac.kr
† e-mail: usman@nm.gist.ac.kr
‡ e-mail: jongwon@gist.ac.kr, corresponding author

Figure 1: SmartX MVF onion-ring visualization with
multi-level visibility points.

the inter-connections among distributed physical and
virtualized resources. For example, the vertices of the
tree represent physical/virtualized boxes (denoted as
pBox and vBox) and virtual switches. And, distributed
branches from tree root show network topology inside a
box, respectively. Thus, we can easily understand the
inter-connection among distributed clusters.

However, visualizing multi-layer and multi-level in a
flat tree style is quite difficult. Moreover, the increased
adoption of virtualization and containerization makes
the playground much more complicated than before. For
example, containerized entities (e.g., cBoxes for machine
container instances) may be placed inside vBoxes,
which are again placed inside pBoxes. Also, there exist
several overlay-oriented inter-connection networking
among them, even across multiple sites. Furthermore,
to-be-visualized multi-levels visibility points for
visibility and security operation will be an additional
difficulty.

To address the above difficulties, we focus on onion-
ring-style visualization as shown in Figure 1. Tiered
rings on the surface partially cover the multiple layer
visualization requirements of SmartX MVF. Also, the
color-coded areas, separated with lines correspond to
distributed sites (i.e., clusters) that host physical,
virtualized, or containerized entities (e.g., boxes,
switches, and microservices functions). Dashed circles
on the surface may highlight inspection areas where
multi-level security is being applied. If we rotate the
onion-ring, the viewpoint of the dashboard will change
to multi-level focused visualization.

Finally, SmartX MVF defines two types of visibility
points. Passive measurement points cover resource
statistics and packet collection. Active tracing points are
used to assist the persistent and secured operation by
even generating intentional probing packets. Thus, it is
important to realize practical and light-weight tools to
support the targeted visibility points for SmartX MVF.

3 IMPLEMENTATION PROGRESS

In this section, we explain the on-going implementation
of onion-ring visualization with multi-level visibility
points, by targeting OF@TEIN+ Playground (an
international multi-site SDN-Cloud testbed [2]).

Figure 2 shows current implementation of onion-ring
visualization. The dashboard is effective in showing
underlay-layer, resource-layer, and flow-layer
visualization together in a single unified view. At the
underlay layer, from the center to outside, we can see
international network PoPs (e.g., TEINSG, TEINHK),
national PoPs (e.g., VINAREN, UNINET, …) and sites (e.g.,
VN-HUST, TH-CHULA, …). On top of distributed sites,
SmartX (cluster) boxes are shown with their type (C, S,
B) as well as their IDs. Some physical boxes have a
number of virtual boxes within them, respectively. For
example, SmartX Type-O box in KN site has five vBoxes
and SmartX Type-O box in GIST site have 3 vBoxes. With
the associated box IDs, we can easily visualize resource
usage graphs in the boxes. Thus, with the support of
visualization dashboard, the operators and developers
of testbed playground can easily grasp the overlay-
based playground topology and check its relationship
with the underlay WAN networks that belong to
separate network operators.

We implemented four types of measurement points
and one type of tracing point. Measurement points can
collect the visibility data for IP packets, VXLAN packets,
pBox computing resource status, Libvirtd-based vBox
computing resource status. Especially, the
measurement-style visibility point allows us to capture
all packets with desired protocol matches in a light-
weight manner by leveraging eBPF (extended Berkeley
Packet Filter) [3]. Also, PerfSONAR monitoring package
is adopted for tracing by placing it as a Docker container
into the target box. With the PerfSonar-based tracing
point, we can check end-to-end networking bandwidth
and latency.

4 FUTURE WORKS
The proposed visualization is still facing several
challenges to solve. First, it is required to diversify the
types of visibility points to satisfy the requirements of
multi-level visibility points. Also, the implementation
for 3D-enhanced onion-ring visualization is needed by
addressing the multi-layer and multi-level visibility
implications via iterative refinements, starting from a
single site to distributed multiple sites.

ACKNOWLEDGMENTS

This work was supported by Institute for Information &
Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No. 2017-0-
00421, Cyber Security Defense Cycle Mechanism for
New Security Threats and No. 2015-0-00575, Global
SDN/NFV Open-Source Software Core Module/Function
Development).

REFERENCES
[1] M. Usman, A. C. Risdianto, J. Han, M. Kang, and J. Kim, “SmartX

MultiView visibility framework leveraging open-source software
for SDN-Cloud playground,” in Proc. NetSoft 2017, IEEE, July 2017.

[2] A. C. Risdianto, et al, “OF@TEIN: A community effort towards
open/shared SDN-Cloud virtual playground,” in Proc. APAN-NRW
2015, Asia Pacific Advanced Network, Aug. 2015.

[3] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov, “Linux Socket
Filtering aka Berkeley Packet Filter (BPF)” [online] available at
https://www.kernel.org/doc/Documentation/networking/filter.txt

Figure 2: Onion-ring visualization for OF@TEIN+ Playground.

	Multi-layer Onion-ring Visualization of Distributed Clusters for SmartX MultiView Visibility and Security
	Abstract
	Keywords: Unified monitoring, multi-layer visibility, measurement and tracing, and security analysis with visibility data.
	1 Introduction
	2 Concept Design
	2.1 Security Extension of SmartX MVF
	2.2 Onion-ring Visualization

	3 Implementation Progress
	4 Future Works
	References

