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1 INTRODUCTION

Reinforcement learning (RL) has shown promising potential for a
wide range of real world applications including robotics over the
years. However, due to the nature of exploratory learning involved
in RL, it is vulnerable to adversarial threat which affects its usability
in safety critical applications. Thus, in applications where safety
is of utmost importance, there is a growing need for integrating
RL with safety mechanisms. Moreover, RL agents are unable
to interpret their behavior and most RL policy for complicated
environment, in nature, are unintelligible to human, thus users
lose confidence in its correctness. The black-box nature of RL’s
deep neural network (DNN) decisions decreases end-users’ trust
of the agent’s behavior. The lack of explainability implies that
the optimal strategies agents learn cannot be used to improve our
understanding of their safety. Since safety-assurance approaches,
in general, compromise system performance, we must ensure that
human practitioners and users trust them, lest they ignore them and
negate their effectiveness. The literature lacks a general framework
that can automatically and interactively explain the features that
assure agents’ safety and performance individually and in teams.
In this paper, we demonstrate the usage of our explainable
RL method, CAPS [5] that can be integrated with existing RL
algorithms to improve their explainability with and without our
proposed safety method. The interpretation and explainability of RL
in general and safe RL in particular are still relatively unexplored,
lacking well-established principles and best practices. This paper
shows that we can bring the traditional software development
life-cycle concept into RL safety assurance by allowing users to
peek into its black- box model, understand its policies, then identify
new safety requirements or refine existing ones. We use CAPS to
explain the learned policies at the agent level with and without the
safety method to increase users’ trust in this method. Interpretable
graphs generated from CAPS approximate the agent’s behavior and
can be further analyzed through manual inspection, model checkers,
or statistical analysis to elucidate the behavior of the underlying
RL systems. We hypothesize that RL safety will result if CAPS
transparently offers enough explanations of agent’s decisions and
actions in terms of safety.

2 REINFORCEMENT LEARNING

RL is suitable for solving Markov decision process (MDP) problem,
which can be written as a tuple M = (S ,A ,P,R). Here S
denotes the state space, A denotes the action space, P : S ×A
is the transition probability, and R : S ×A ×S is the reward
function. An RL agent chooses its actions according to its policy,
π(at |st) and adjust it to acquire the optimal policy π∗ that maximizes
the state-action value function Qπ∗(s,a);s ∈ S anda ∈ A .
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3 EXPLAINABLE RL: SAFETY AS A PRODUCT OF EXPLAIN-
ABILITY

One of the core challenges of making RL safe is making it ex-
plainable to the practitioners and end-users. Since safety assurance
approaches, in general, compromise the system performance, it is
critical to ensure that the human practitioners trust these approaches,
lest they ignore them and negate their effectiveness in satisfying the
safety requirements. Explainability builds such trust by allowing the
practitioner to query the explanations for a given safety decision – in
addition to the RL policy itself under this situation. This additional
information helps make the safety decisions more actionable for
the practitioner and helps build trust in the RL system. Hence, the
safety in RL and AI ,in general, becomes a product of explainability
and transparency. In this section, we briefly explain our safe and
explainable methods for RL agents.

3.1 Safe RL Through Shielding and Adversarial Training

We built a safe method called Diversity for Adaptive Safety for RL
(DAS-RL) using an adaptive shield mechanism to detect probable
safety violations and switch between task policy and safety policy
accordingly. The task policy for an optimal RL agent is trained
to maximize its reward and thereby accomplish its task objective.
Whereas the objective of the safety policy is to maximize agent’s
safety only without considering the objective function. Safety shield
is a function that can identify potential unsafe states responsible
for safety constraint violations and minimally manipulates agent’s
unsafe actions to ensure safety [1]. Unlike [6, 7] which use a safety
critic shielding to prevent task policy from safety violation, mean-
while acquires a safety policy by optimizing a Lagrangian Relaxation
(LR) function with safety critic approximation, we acquire the safety
critic and the safety policy in a completely different manner by train-
ing an optimal adversary with respect to the victim agent. Since the
complete environment dynamics can not be known prior execution,
it is not possible to know how exactly the agents will behave in
the real world. However, it is reasonable to assume that we can
approximate their most likely behavior. Thus, by training an optimal
adversary we can acquire the most likely behavior responsible for
safety violations. DAS-RL learns its safety policy by using the opti-
mal adversary’s policy as the behavioral basis for the agent’s safety
violation nature and pushing its behavior away from the adversary’s
behavior. This allows us to define a safety policy that pushes the
agent far away from the policy distribution of the adversary agent.
During execution phase the shield mechanism can help the agent to
adaptively switch between the task and safety policies. Since the
critic function of the adversary actually captures the value of a state
based on how likely it is going to violate any safety constraints, we
defined our safety shield using the adversary’s critic network.

3.2 Graphical Summaries for Explaining Learned Policy
of RL Agent

In [5], we developed a tool, CAPS, for explaining individual RL
policies. CAPS first collects simple natural language (NL) predi-
cates from users that describe potential aspects of the agent’s state.
It then collects no more than 500 timesteps from the RL agent tra-
jectories. To make the explanation process tractable, CAPS uses a
clustering algorithm, CLTree [4], that abstracts the agent’s states into
a hierarchy of different configurations of clusters (C). Each cluster



groups similar states into one abstract state. A heuristic optimization
technique selects the best configuration of the clusters, as determined
by the accuracy of the state transitions and end-user interpretability.
For each cluster, CAPS also identifies whether the agent considers
the states in the cluster safety-critical. CAPS then forms the agent’s
policy (π) and transition function as a directed graph G = (V,E),
where the nodes v are the clusters of states, forming abstract states,
and the edges E represent the actions chosen by π as well as the
probability of transitioning from one abstract state to the next. To
enrich the graph with more semantic meaning, CAPS labels the
abstract states (graph nodes) with concise NL explanations using the
user-defined language predicates and Boolean algebra. By control-
ling the height of the CLTree, CAPS gives the end-user the choice of
generating different policy graphs of different sizes, with each size
corresponding to different levels of abstraction. Furthermore, we
improved upon existing CAPS by computing two additional metric
for each node — TS and FP. TS stands for timestep, which indicates
the remaining timesteps the agent is expected to finish the episode
starting from this abstract state. FP stands for failure probability,
which indicates the estimated failure probability of the agent starting
from this particular abstract state. In this paper, we use CAPS to
explain the RL agent’s policy with and without the safety method
(DAS-RL) which will help the end-users and practitioners to; (1) un-
derstand the agent behavior in safe and unsafe situations, (2) identify
the safety-critical states, and (3) identify new safety requirements or
refine the existing ones.

4 EXPERIMENTS

We demonstrate the explainability of RL agent policies using a
gridworld environment under a white box attack: strategically-timed
attack [3]. In this environment the agent’s task is to safely navigate to
the goal while avoiding getting into two fixed terminating traps. We
divide the gridworld environment into different regions, labeled with
human-interpretable predicates Fig.1a. We trained a standard soft
actor critic (SAC) [2] algorithm to acquire the task policy. During our
experiment we compared the standalone baseline SAC task policy
against SAC task policy with DAS-RL safety under strategically-
timed attack.

4.1 Behavioral Interpretation

From the transition graph of the SAC optimal task policy without any
attack (Fig. 1b) we can see the agent navigate from “start” to “goal”
by moving through different “predicates”, gradually decreasing the
remaining timestep to finish this episodes. Since this is the optimal
policy for agent, the failure probability is always 0%. However,
the behavior of the same SAC task policy under strategically-timed
attack changes significantly (Fig. 1d). In order to analyze the
behavior of the agent with respect to external perturbation, we placed
the agent at coordinates (4,4) in (Fig. 1a);a position closer to the trap
which corresponds to ”In normal path” node in CAPS graph. We can
observe from the graph that under the attack, agent eventually move
into the trap, with failure probability increases to 100%. Finally,
from the transition graph of the SAC task policy equipped DAS-
RL safety policy (Fig. 1f), we observe that for the same starting
positions, the agent can successfully move away from the traps even
under strategically-timed attack. As a result, the failure probability
significantly decreases, and eventually the agent is able to navigate
back to the goal state.

5 CONCLUSION

In this study, we use CAPS to study the behavioral pattern of the
same SAC agent with and without our proposed DAS-RL safety
algorithm under strategically-timed attack. The CAPS interpretation
clearly shows the vulnerability of SAC agent without any safety
measures which DAS-RL can clearly mitigate.

(a) Environment with human-
interpretable predicates

(b) CAPS transition graph of optimal
SAC task policy without any attack

(c) SAC task policy trajectory under
strategically-timed attack

(d) CAPS transition graph of optimal
SAC task policy under strategically-
timed attack

(e) SAC task policy + DAS-RL safety
policy trajectory under strategically-
timed attack

(f) CPAS transition graph of optimal
SAC task policy+DAS-RL safety policy
under strategically-timed attack

Figure 1: Experimental results. Environment’s details and agents
trajectory (left column); agent’s transition graph (right column)
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