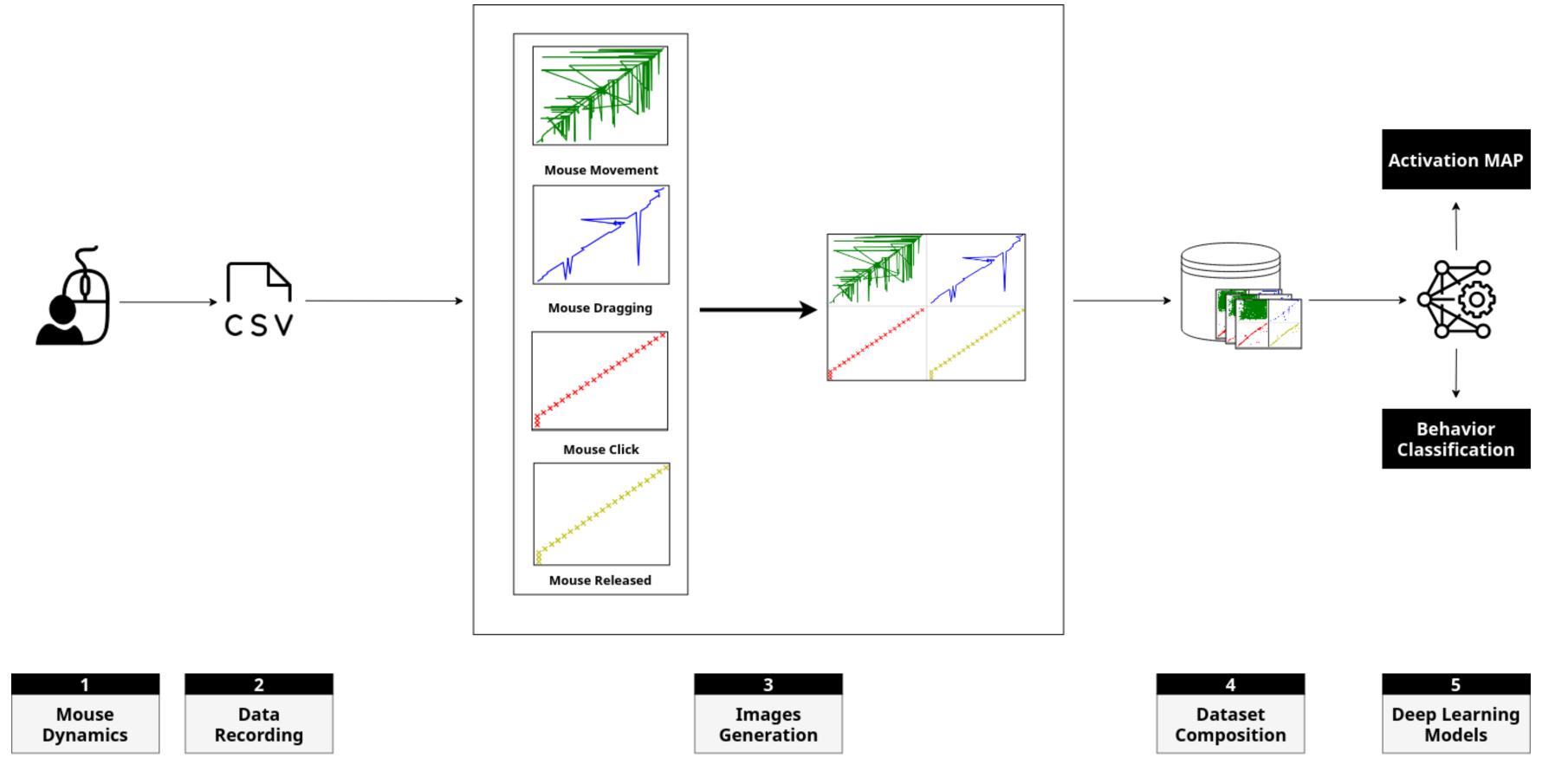
A Proposal for Continuous and Silent User Authentication Through Mouse Dynamics and Explainable Deep Learning


Giovanni Ciaramella ¹, Giacomo Iadarola ¹, Fabio Martinelli ¹, Francesco Mercaldo ^{1, 2}, and Antonella Santone ²

(1) Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy | (2) University of Molise, Campobasso, Italy

INTRODUCTION

The number of attacks on personal accounts has grown over time. Numerous user authentication techniques have been created throughout the years to avoid it.

Among these, there is biometric-based authentication. This type of technique exploits physical-biometric or behavior-biometric for user recognition.

For instance, touch dynamics, keyboard dynamics, and mouse dynamics belong to this second category.

Figure 1 - The proposed method for continuous and silent user authentication.

PRELIMINARY EVALUATION

We conducted a preliminary evaluation using the **VGG16 model** using the hyperparameters reported in Table 1, and we achieved the results reported in Table 2.

Image Size	Batch Size	Epochs	Learning Rate
150x3	64	20	0.0001

Table 1 – Hyperparameters used to conduct the preliminary evaluation.

Loss	Precision	Accuracy	F-Measure	AUC
0.428	0.902	0.902	0.902	0.953

Table 2 – Results obtained after the test session.

The class labeled illegal behaviors found **2179 true positives**, **2151 true negatives**, **249 false positives**, and **221 false negatives**. Results are displayed in Table 3.

THE PROPOSAL

We experimented on the "Balabit Mouse Dynamics Challenge" dataset [1], which outlined some tasks, and the users logged to a remote server where they executed them, to collect the mouse interactions between users and the system.

The data were saved in CSV files with the following structure: record timestamp in second, client timestamp in second, the current condition of the mouse buttons, additional information about the current state of the mouse, and x-y coordinate of the cursor on the screen.

This process has been applied for every ten users, and at the end, each CSV file created was labeled as **legal behaviors** and **illegal behaviors**.

DATASET COMPOSITION

For image generation, we developed a script that goes to insert the x and y coordinates for each file into each specific list, which takes the name of the action done by the user.

The coordinates represent the most significant data in a row.

After graph creation for each list, they are joined into a single image with a PNG extension.

After that, we divided them into two classes, such as legal behaviors (**1271** samples) and illegal behaviors (**405**

LOSS	Precision	Accuracy	F-Measure	AUC
0.897	0.902	0.902	0.902	0.902

Table 3 – Results obtained for "illegal behaviours" class

About the second class, labeled as legal behaviors the model retrieved **2151 true positives**, **2179 true negatives**, **221 false positives**, and **249 false negatives**. Results are shown in Table 4.

Loss	Precision	Accuracy	F-Measure	AUC
0.896	0.902	0.902	0.902	0.902
Table 1 Recults obtained for "legal behaviours" class				

Table 4 – Results obtained for "legal behaviours" class

We proceeded to use the **Grad-CAM** to understand the reliability of classification and which areas of the image are useful for the prediction. An example of Grad-Cam is reported in Figure [2]

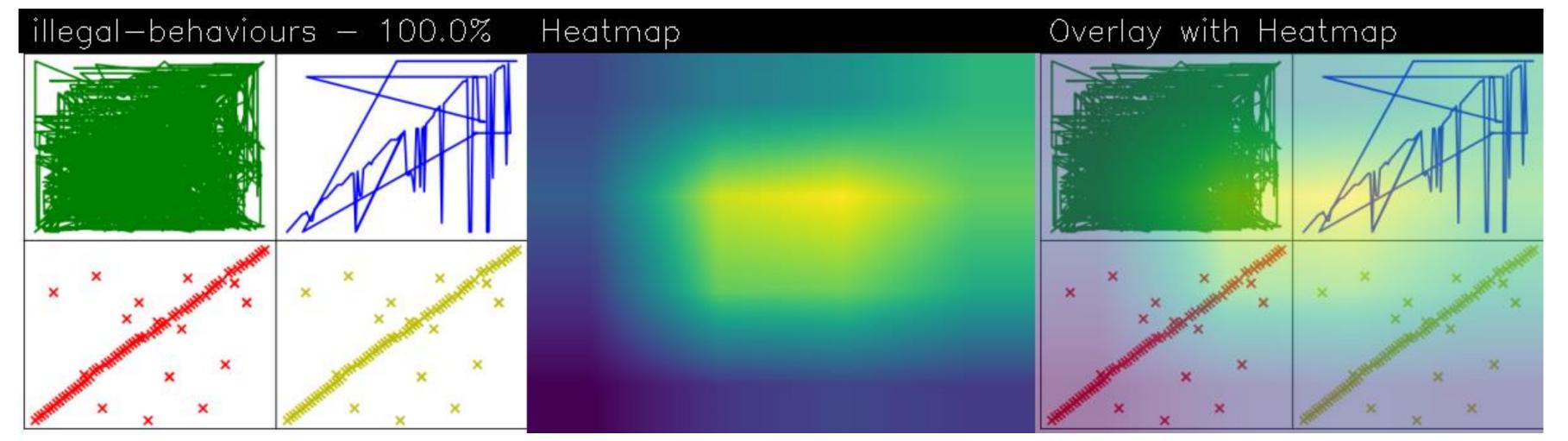


Figure 2 - The image belongs to the class illegal behaviours and was obtained after applying Grad-CAM **FUTURE WORKS**

In future studies, we would consider different models to improve the performances. Furthermore, we would consider more data for model training and evaluation.

We consider the **data augmentation technique**. Using this approach, we increased the number of components in our dataset to 8000 elements for each class.

CONTACTS

g.ciaramella1@studenti.unimol.it, giacomo.iadarola@iit.cnr.it

fabio.martinelli@iit.cnr.it, francesco.mercaldo@unimol.it

francesco.mercaldo@iit.cnr.it, antonella.santone@unimol.it

REFERENCES

[1] Fülöp, Á., Kovács, L., Kurics, T., Windhager-Pokol, E. (2016). Balabit Mouse Dynamics Challenge data set.

