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Figure 1: Dynamic uncertainty quantification example for epistemic uncertainty. On the left, the In-Distribution slider is set to a lower threshold, 
allowing the model to make predictions about the data, despite its uncertainty. The left bars have a light color, indicating a low In Distribution 
confidence. On the right, once the slider is set to a higher threshold, the dashboard moves the data into the OTHER category.

ABSTRACT 
As encrypted network traffic becomes increasingly prevalent, cyber 
network operators are operating in the dark with regard to the kinds 
of traffic flowing through their networks. Machine learning (ML) 
techniques have recently emerged that can rapidly learn and 
provide contextual labels to encrypted traffic. However, as ML-
based applications reach the hands of operators, they do not always 
understand the limitations of the underlying models and their 
predictions, as ML models often struggle or fail to communicate 
the confidence of their predictions. Without this nuanced 
understanding, operators may blindly trust a model’s predictions, 
unaware that the model is only marginally confident or has never 
seen the input data during training. We present a visualization 
dashboard for encrypted network traffic labels that combines 
confidence sliders and several visualizations to help contextualize 
the model’s predictive confidence and the likelihood that the model 
has seen similar network traffic. 
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1 INTRODUCTION 
Because traditional network traffic analysis techniques that rely on 
port mappings or packet payload inspection cannot provide 
situation awareness of the encrypted network traffic applications,  
machine learning (ML) models based on the observables of 
encrypted network traffic (e.g., timing and size statistics) have been 
developed to provide that context [1]. However, ML models suffer 
from two kinds of uncertainty, aleatoric and epistemic [2], that can 
adversely affect operator decision making. An example of aleatoric 
uncertainty in our model regards the confidence of assigning a label 
between two similar classes (say, sftp and scp) that the model was 
trained on. An example of epistemic uncertainty regards the 
confidence of the model assigning any label to an application it was 
not trained on. Network operators have situation awareness (SA) 
use cases for which uncertainty matters. For example, getting a 
rough idea of the proportions of network traffic for each IP address 

for quality of service would allow for some uncertainty, whereas 
scanning a network for any instances of a specific application 
would require higher confidence. We have created a prototype 
application that allows operators to quickly train their own models 
in order to gain SA of encrypted network traffic and here present 
how the prototype manages uncertainty via dynamic visualization. 
To our knowledge, this is a novel contribution to cybersecurity 
dashboards, as existing approaches are mostly concerned with 1- or 
2-D data (error bars, image processing, geospatial, etc.) [3].  

2 METHODS 
Throughout, we use the (arbitrary) labels: C2 (Command and 
Control), CHAT, FILE_TRANSFER, STREAMING, and VOIP 
(Voice over Internet Protocol). To train a new model, users can load 
packet capture (PCAP) files into the pipeline and assign each file a 
label (eg., file1 represents CHAT, file2 is FILE_TRANSFER, etc). 
The new model is then trained on the labelled data, which can be 
used to make inferences on unseen PCAP data. For every data 
sample, the model assigns calibrated “Class Confidence” scores for 
each label (encoding aleatoric uncertainty) and an “In Distribution” 
score (encoding epistemic uncertainty) between 0% and 100%. The 
Class Confidence scores are the calibrated probabilities that the 
data sample belonged to each of the output labels, for example: 
CHAT: 25%,VOIP: 75%, etc. The In Distribution score encodes 
epistemic uncertainty [2], with 0% meaning that the ML model 
should not be trusted and 100% indicating that the new data is very 
familiar to the model. 
 
To help operators explore and understand the limitations of their 
trained models, we created a visualization dashboard that has 
multiple ways for operators to view and filter the predicted labels 
of a network traffic dataset. Users first upload PCAP network data 
to the model, which classifies each data sample along with the In 
Distribution and Class Confidence scores. This labelled data is then 
returned to the dashboard to be visualized. In all of our 
visualizations, each predicted label is assigned a color (ie. CHAT 
is red, FILE_TRANSFER is orange, etc.).  

2.1 Controlling for Uncertainty 
Our dashboard has two confidence sliders (Fig. 2) that operators 
can adjust, which are the primary toggles for dynamic uncertainty 
quantification filtering for the entire dashboard. Each slider sets a 
minimum threshold from 0% to 100%, and predicted samples that 
do not meet both thresholds are reclassified generically 
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as “OTHER”.  

 
Figure 2: In-Distribution and Class Confidence Sliders 

The first In-Distribution slider lets operators set a minimum in-vs-
out of distribution confidence, such that samples that are out of 
distribution are considered OTHER. For example, if the user sets 
the In-Distribution Confidence slider to 65% but the model is only 
64% confident that the sample was in-distribution, the prediction 
would be reclassified as OTHER. The Class Confidence slider lets 
operators set a minimum predictive confidence, such that predicted 
labels that are not confident enough are considered 
OTHER.  Labels are only shown in the dashboard for data that 
clears both thresholds. Setting high thresholds reduces false 
positives and gives operators confidence in the results of the 
model. A large number of out-of-distribution results would indicate 
that the model needs more training data of that kind, potentially 
under an entirely new label. Setting low slider thresholds, 
conversely, reduces false negatives and can be useful for targeted 
investigation on rare traffic.  

2.2 Dashboard Visualizations 

 
Figure 3: Aggregate Bar Chart 

The first visualization is an aggregate bar chart (Fig. 3), in 
which each bar shows how many samples were predicted to be the 
given label to provide an overview for the entire dataset. Each bar 
is further subdivided into darker and lighter color shades to 
indicate whether the model believes the samples to be in (darker) 
or out (lighter) of distribution [4]. With this in-vs-out of 
distribution breakdown, operators can identify data points that their 
model has not seen before, and thus filter out into OTHER. The 
side-by-side screenshots in Fig. 1 demonstrate the In-Distribution 
Confidence filtering capability; Class Confidence behaves 
similarly. 

 
Figure 4: Network Connection Graph 

The second view is a connections Sankey diagram (Fig. 4), which 
has two sides – source IP Address and destination IP Address 
– with color-coded lines representing connections between the 
source and destination IPs. The lines are sized by the number of 
connections, the number of packets, or the total data size and help 
operators see what actions certain IP addresses were 
conducting and the bandwidth consumed. This can be helpful for 
identifying suspicious behavior on a per-connection or IP basis, for 
example an unauthorized IP or application behavior 
uncharacteristic to a particular IP.  

 
Figure 5: Timeline Visualizations 

The final view is a set of timelines (Fig. 5) that visualize the 
number of connections, the number of packets, or the total data 
size of the network traffic over time. One timeline overlays the 
different labels on top of each other which helps operators identify 
dominant traffic types at different points in time or application 
workflows. The second timeline displays the same data, but stacks 
the labels one on top of the other, which betters displays aggregate 
changes in behavior over time. Moreover, this stacked timeline can 
be filtered to show, for a given label, the in-vs-out of distribution 
breakdown over time. These timeline visualizations can be useful 
for showing temporally related behavior – for example, some initial 
C2 traffic that triggered FILE_TRANSFER traffic – or a cluster of 
out of distribution traffic that should be investigated. 
 
In addition to these visualizations, the dashboard displays all the 
sample data in tabular form, and allows users to completely filter 
out traffic by the predicted label, IP addresses, or ports, as well as  
change the color scheme to a colorblind-friendly palette [3].  

3 CONCLUSION 
With our dashboard, users can make informed decisions instead of 
blindly trusting their ML models. Our prototype dynamically 
moves uncertain predictions into an “OTHER” category. Through 
the In-Distribution slider and color shading, we help operators 
identify previously unseen data on which they need to retrain their 
model to address epistemic uncertainty. Through the Class 
Confidence slider, we enable users to trust the outputs of their 
models by filtering out unconfidently classified samples to address 
aleatoric uncertainty. Moreover, the various visualizations present 
data in aggregate, network flow, and temporal views, giving 
operators nuanced SA that can help them determine further courses 
of action. Giving operators the ability to visually quantify 
uncertainty can help operators make better decisions with their ML 
models. 
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