

William J Matuszak, Lisa Dipippo and Yan Lindsay Sun

Research Overview

- Problem:
 - Lack of visualization techniques for Cyber Trust
- Application:
 - Power Grid SCADA system
- Solution:
 - Mathematical model for Cyber Trust

- Calculation / Visualization of Trust Metrics (Time history, Histogram)
- Visualization of data aggregations (Geographic & bar graphs)
- Results
 - Identification of small-scale Hactivist attack (Power source e.g. Nuclear, company)
 - Identification of mid-scale Geographic attack
 - Identification of large-scale Nation State Attack ("Stuxnet" like)

Cyber Trust Theory

- Trust
 - A well studied concept in sociology and psychology.
 - known as the driving force for collaboration in social communities.
- Developed Mathematical Foundation for Visualization
 - Based on observed behaviors.
 - Good behaviors reinforce trust.
 - Bad behaviors reduce trust.
 - Unpredictable behavior also reduces trust.

Inherent trust in sensors is a weak link in SCADA Cyber Security

Multi-Dimensional Trust

- Different behaviors lead to different types of trust
- Power grid cyber attacks
 - False alarm → False alarm trust

 - Damaged/affected sensor → Availability trust
- Overall trust
 - Computed from all three types of trust
 - Weighted average, minimum, predictability

Trust knowledge is essential: Hackers will find a way in to systems

Predictability Trust

- On/Off Attack
 - Attacker knows how trust is computed
 - Mostly good behaviors occasional bad behavior
 - Basic trust computation will not reflect the pattern
- Predictability trust
 - If behavior "disappoints" reduce predictability trust
 - Predictability trust used to compute overall trust
 - On/off attack can be detected after a few bad behaviors
 - Ratio of on/off attack detected is parameterized by bad behavior window size

Cyber Trust Visualization

Visualization Framework

- Framework for building highly modular Java-based visualization applications
- Provides common look-and-feel, application programming interfaces, foundational services (UI management, service registration/discovery, application events and persistence)
- Uses the standard OSGi services platform to provide module loading, version management and sandboxing
- Supports mix-and-match assembly of separately developed functional modules
- Service-oriented layered architecture
 - Core framework
 - (Optional) GIS framework (geographic map, overlays, tools, API)
 - Separation of interface (API specification) and implementation
- Reduces application development time by providing almost-complete application requiring only domain-specific module development
- Supports a high degree of re-usability of modules

Adaptive Visual Display

Adaptive Visual Display

- Multiple Geo displays at independent zoom levels
- Collapsible to single Geo
- Aggregation with zoom
- Metrics plotted real time in context with Geo
- Built on Visualization Framework

Configurable at Run Time to Meet Operational Requirements

Flexible / Configurable Design

- **Opacity / Transparency**
 - Operator control
- OTI Size
 - Slider Control
- Color Alert levels
 - Demo 3 Quantized levels
 - Adaptable to entire color palette
- Types of Trust
 - Demo = 3 trust types
 - Configurable based on application
- Display Layers
 - Toggle data on/off

Aggregation Levels

(a) Individual Node – Three types of Trust

(c) Aggregate Group - Three types of Trust

- (d) Aggregate Group- Overall Trust
- (b) Individual Node Overall Trust

- **Configurable Aggregation**
 - Currently set-up is 4 levels of automatic aggregation with zoom
 - Individual substation with all three trust types plus overall
 - Individual substation as dots for overall trust only
 - Aggregated group (e.g. City) with all three trust types plus overall
 - Aggregated group (e.g. City) as dots colored for overall trust
 - Size of dots proportional to number of substations in the aggregation
 - Aggregate dots located at the mean location 12

Metric Assessment System (MAS)

MAS Allows for real time assessment of data

- Support plotting of data in various formats and axis in context with geographic visualization
 - o Single node Historical trust of time
 - o Multi-node historical trust
 - \circ % of nodes at low trust / high trust
- Bar graph by aggregated value
 - o Plant owner
 - o Fuel type (nuclear, solar, gas)
 - o City (zip code)
 - o Equipment (sensor type, generators, controllers)
- Histogram of all sensor nodes

Trust Over Time

- "Drill-down" from Geographic display detailed trust evaluation
- Time History plot for each type of trust and overall trust
 - False Alarm
 - Detection
 - Availability
 - Overall
 - Overall trust calculated with *Predictability Trust*

On - Off attack False Alarms

Metric Assessment System (MAS)

- Visualization of trust based on aggregated parameters
 - Provides insight into type attack and goals attacker
 - Visualization of correlations of "bad behaviors"
 - Sensors -> Worm aimed at specific equipment
 - Voltage -> Terrorist looking to inflict most damage
 - Company -> Disgruntled employee attacking their employer
 - Power source -> Hactivist attacking a specific originating fuel source

MAS Histogram Example

- Comparison of histogram from different areas can help operator understand environmental conditions and / or Threat posture
 - Node 1 (top) is an example of a histogram of trust for benign environment
 - Mean availability trust value high
 - Variance small
 - Node 2 (bottom) is an example of a histogram of trust for a poor environment
 - Mean availability trust lower
 - Variance larger

Results

Results

Protection vs. Attack	Sensor	Firewall+	Cyber Trust+	Predictability+	Visualization+
Physical Attack (PA)	~	~	~	~	~ ~
Known Malware Attack		~	~	~	~
Simple Cyber Attack			 ✓ 	 ✓ 	 ✓
Advanced Cyber Attack				~	 ✓
Advanced Attack Hactivist					 ✓
Advanced Attack Geographic					 ✓
Advanced Attack Nation State					~

Predictability Trust

- On/Off attack (4 good behaviors, 1 bad)
 - Designed to fool trust processing

- Trust metric plot shows how trust goes down
 - Forgetting factor changes with negative behaviors

Results – Nation State Attack

Summary

- We researched techniques to calculate and visualize Cyber Trust in a power grid SCADA system
- We demonstrated visualization of Cyber Trust versus various attacks
- Potential Follow-on R&D
 - Visualization of Cyber Risk
 - Behavior monitoring to determine trust values
 - Indirect vs. direct trust computation
 - Symbolic Fusion and Ontology Visualization

