

EMBER: A Global Perspective on Extreme Malicious Behavior

Tamara Yu

Richard Lippmann, James Riordan, Stephen Boyer

14 September 2010

MIT Lincoln Laboratory

This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-C-0002 and by the National Security Agency/Central Security Service (Publication No. U/OO/NTC/0701). Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

1 VizSec'10

World Map for Security Visualization

- World maps are commonly used for visualizing wide-spread malicious behavior of Internet hosts
 - Pro: easy to understand
 - Con: generally not very useful
- Recent security visualization research focuses on networkoriented views
 - Cyber neighborhoods are deemed more relevant for threat analysis

Has the world map been all but written off as a "serious" security visualization?

Conficker World Infections¹

Conficker Network Neighborhood Infection Map¹

Exhibit A: Dots on the Map

¹ FIRE: FInding RoguE Networks, 2010. <u>http://maliciousnetworks.org/map.php</u>

Exhibit B: Heat Maps

Conficker¹

NASA "Earth-at-Night"²

"Touristiness"³

Heat map displays mainly show population centers, where most potential victims are...

...in the same way artificial lights or tourists show up in large cities.

¹ Team Cymru. Conficker Worm Visualizations, 2009. <u>http://www.team-cymru.org/Monitoring/Ma</u>

 ² NASA. Earth's City Lights, 2000. <u>http://visibleearth.nasa.gov/view_rec.php?id=1438</u>
³ World Touristiness Map, 2010. <u>http://www.bluemoon.ee/~ahti/touristiness-map/</u>

Exhibit C: Normalized Heat Map

¹ Microsoft. Microsoft Security Intelligence Report Volume 8, May 2010. <u>http://www.microsoft.com/downloads/details.aspx?FamilyID=2c4938a0-4d64-4c65-b951-754f4d1af0b5</u>

^a MIT Lincoln Laboratory

Exhibit D: Infections by City

¹ Enigma Software Group. ESG MalwareTracker, 2010. <u>http://www.enigmasoftware.com/malwaretracker/</u>

Find Regions with Malicious Activity that is Higher or Lower than Expected

Group IP addresses by City

- Using countries is often too coarse
- Internet service provider boundaries often agree with city boundaries
- Internet security authorities and policies often apply across a city
- Law enforcement domains often agree with city boundaries
- Malware often preferentially spreads to local class C networks and these are often within a city
- This granularity will make it possible to see targeted malware
- Map IP addresses exhibiting malicious activity geographically to cities
- Normalize by the population of computers in each city

Utility of Providing Plots of Extreme Variations In Malicious Activity

High Malicious Activity

- ISPs explicitly allow and protect criminal activity (e.g. the Russian Business Network)
- Poor "network hygiene"
- More highly targeted than other regions

Low Malicious Activity

- ISPs actively prevent, block or rapidly detect and eliminate malicious activity
- Strong cyber laws and enforcement
- Good "network hygiene"
- Not being targeted by cyber criminals

• Accuracy of the analysis is influenced by

- How malicious IP addresses are harvested
- Geo-location accuracy

• For proof-of-concept demonstration, we use

- MaxMind GeoLite City¹: database for geo-locating IP addresses to cities
- Dshield²: dataset of malicious IP addresses (approx. 600,000 daily)

# source IP	targetport	protocol	reports	targets	firstseen	lastseen
216.113.038.035	1080	6	147601	84012	6:46:07	22:43:31
088.084.131.145	22	6	143515	79580	2:58:26	16:32:07
094.023.193.116	8080	6	76089	76080	16:31:45	20:20:52
222.073.204.093	1433	6	66190	64490	0:12:52	22:01:51
200.020.215.131	22	6	119222	64348	7:29:59	7:43:38
061.160.213.136	2967	6	62741	62494	0:12:41	23:08:34
061.160.213.016	135	6	77907	57514	0:00:48	23:07:10
220.184.013.088	2967	6	81908	57240	1:20:45	23:52:41
058.243.161.051	1434	17	54275	54226	0:00:02	23:59:59
202.101.180.165	1434	17	44066	44040	0:00:02	23:59:59
061.189.153.251	1434	17	37270	37244	0:00:00	23:59:59

¹MaxMind GeoLite City, 2010. <u>http://www.maxmind.com/app/geolitecity</u>

² DShield, 2010. <u>http://www.dshield.org</u>

- It is impossible to directly count the number of Internet hosts in a city
- Approximation methods are either inaccurate or not scalable
 - e.g., estimate from address allocation, active probing, or inference from web or DNS traffic
- Our method relies on public data sources
 - GeoNames¹: city human population sizes
 - Internet World Stats²: country Internet penetration rates

 n_{city} = Population_{city} • Internet Penetration Rate_{city}

A Normalized Metric: Standardized Incidence Rate (SIR)

Age-Adjusted Incidence Rate — Lung and Bronchus*†‡

■ 2005** ■ All Races ■ Males and Females

$$\operatorname{sir}_{\operatorname{city}} = \frac{\operatorname{ips}_{\operatorname{city}}}{n_{\operatorname{city}}} \cdot 100,000$$

- Used in the past to track cancer infection rate
 - Above plot¹ shows the standardized incidence rate per state for lung and bronchus cancer across the United States in 2005
- Our proposed metric is infection rate normalized for each 100,000 computers in each city
 - Easy to understand whole numbers (1% is 1000)
 - Makes it possible to compare malicious activity rate across cities

¹ Centers for Disease Control and Prevention. U.S. Cancer Statistics: An Interactive Atlas, March 2010. <u>http://apps.nccd.cdc.gov/DCPC_INCA</u>

• Uncertainties in Internet Penetration Rates

- SIR scores are highly sensitive for countries with low penetration rates
- Higher measurement errors for countries with low rates
- Developed countries have more steady rates than developing countries
- Greater technological disparity between urban and rural areas in developing countries

Compensations for Data Flaws and Statistical Variability (2)

- Adding or removing one infected host (by chance) can dramatically change a city's SIR score under these conditions
 - Small ips_{city}
 - Small n_{city}

$$\operatorname{sir}_{\operatorname{city}} = \frac{\operatorname{ips}_{\operatorname{city}}}{n_{\operatorname{city}}} \cdot 100,000$$

Example:

	Computer Population	Baseline	+1 Infection	Change in SIR
City _A	10,000	ips _{city} = 10 SIR = 100	ips _{city} = 11 SIR = 110	+10%
City _B	1,000,000	ips _{city} = 1000 SIR = 100	ips _{city} = 1001 SIR = 100.1	+.1%

- To compensate for greater variability with smaller cities, EMBER only includes cities with at least 20 infections and 100,000 computers.
 - ±10 infections should result in no more than ±5% change in SIR

- In cancer studies, the SIR is assumed to be binomially distributed around the global mean.
- Can city malicious activity be modeled similarly by assuming the probability of infection for any computer is the same?

$$\sin_{\text{city}} = \frac{\text{ips}_{\text{city}}}{n_{\text{city}}} \cdot 100,000$$
$$\sigma(\sin_{\text{city}}) = \frac{\sin_{\text{city}}}{\sqrt{\text{ips}_{\text{city}}}}$$

Statistically significant cities with more or less malicious activity than expected if the distribution were binomial

We Discovered that SIRs are not Binomial but Have Long Tails

Experimental data shows that SIRs have a long-tail distribution, which is consistent with malware that spreads uniformly with a small probability (α) and spreads preferentially into cities proportional to the malicious activity already present with probability (1- α).

- Goal: Assign identical ranks to cities with statistically equivalent SIR scores
- Compute cities' SIR confidence intervals (distribution-free) to determine the boundaries of equivalency
 - Compute per-city 10-day interdecile range of SIR variability for all cities
 - Find the median 10-day interdecile range across cities (R)

Rank	City	SIR		Rank	City	SIR	, –
1	Kaluga, RU	636.5820		1	Kaluga, RU	636.5820	_
2	Hyderabad, IN	534.2949		2	Hyderabad, IN	534.2949	
3	Lisbon, PT	533.6327		2	Lisbon, PT	533.6327	
4	Sarajevo, BA	512.9266		3	Sarajevo, BA	512.9266	
5	Beijing, CN	508.8253		3	Beijing, CN	508.8253	
6	Vladimir, RU	484.3267		4	Vladimir, RU	484.3267	1
7	Vilnius, LT	466.8473		5	Vilnius, LT	466.8473	
8	Taipei, TW	466.4215		5	Taipei, TW	466.4215	
9	Constanta, RO	463.8035		5	Constanta, RO	463.8035	
	Simple Rankin	g	•		EMBER Rankin	g	

MIT Lincoln Laboratory

 $\frac{R}{2}$

EMBER Display

Useful Features of This World Map Display

- Highlight salient features in the dataset, not population centers
- Dot sizes and colors reveal regional variations
- Provide statistically valid ranking of per-city malicious activity

- We demonstrated an analytical approach toward developing a usable world map display of extreme malicious behavior
 - Score cities by the Standardized Incidence Rate (SIR), which is the number of infections normalized by the local host population
 - Use publicly available data sources for estimating local host population
 - Apply careful adjustments to account for data flaws and statistical variability
 - Present a visualization that is as unbiased as possible
- The high-SIR and low-SIR metrics are useful for exploring geographical variations
 - Regions that are generally risky or well-protected
 - Regions that are targeted or avoided by specific threats
- EMBER can be used on any IPv4 dataset. Higher-fidelity geolocation and population data could be integrated for better results.