PeekKernelFlows: Peeking into IP flows

Cynthia Wagner ¹ Gérard Wagener ¹² Radu State ¹ Alexandre Dulaunoy ² Thomas Engel ¹

> ¹University of Luxembourg FSTC, Campus Kirchberg L-1359 Luxembourg, Luxembourg

²SES S.A. Château de Betzdorf L-6815 Betzdorf, Luxembourg

September 14, 2010

Introduction

- Network flow visualization
 - Popular for human network traffic analysis
 - Evolution of flows per time
 - Identification of protocol patterns
 - Problems
 - Very close view (flow level)
 - \blacktriangleright Neglects topology information \rightarrow subnet information
- Network flows aggregation
 - Get a broader overview
 - Includes topology information
 - \blacktriangleright Small thresholds \rightarrow large amount of aggregated network traffic profiles
 - Large thresholds \rightarrow small amount of profiles (information loss)

Aggregated network flows visualization

Spatial and Temporal Flow Aggregation

We use the tool Aguri to create aggregated network profiles

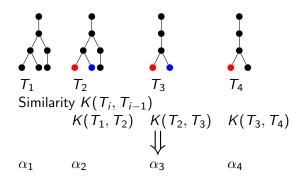
Overview at subnet level using the CIDR¹ notation

Example

%! AGURT-1.0 %%StartTime: Tue Dec 01 13:54:12 (2009/12/01 13:54:12 %/EndTime: Tue Dec 01 13:54:44 (2009/12/01 13:54:44 %AvgRate: 323.40Kbps [src address] 1293591 (100.00)% 0.0.0/5 7351 (0.58%/99.22%) 10.0.0/9 13545 (1.05%/30.79%) 10.4.0.13 237599 (18.37%) 10.91.0.0/24 19625 (1.52%/10.09%) 10.91.0.22 100920 (8.57%) 10.91.1.4 16664 (1.29%) 72.0.0.0/5 21618 (1.67%/37.09%) 74.125.79.91 202791 (15.68%) 74.125.79.93 214301 (16.57%) 74.125.79.99 257396 (2.12%) 74.125.79.104 13649 (1.06%) 83,231,205,49 324379 (25,08%) 83.231.205.50 73506 (5.68%) ::/0 10067 (0.78%/0.78%)

¹Classless-InterDomain Routing

Handling sequential Aguri profiles



Visualize the sequence of similarities $\alpha_{1...n}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The kernel function $K(T_i, T_{i-1})$

Purpose

- Compute similarities between two Aguri profiles
- Purpose: Get a numerical value that can be mapped into the RGB space

- Similarity needs to take into account
 - Structural aspects
 - Volume information
 - Subnet aggregation
- Use a kernel from Machine Learning
- Take into account these aspects simultaneously

Visualizing Aguri Profile Similarities

- Map numerical values into RGB space
- Put the results into a bitmap
 - Sequentially align colored squares on the x-axis
 - Increment the y-axis with a squares length if the end is reached

- The more rectangles you have the more out-dated the overview is
- Normalize the similarities between 0 and 1
- Extend the space to 0xFFFFF
- Extract the R,G,B components
- Colors can be manually amplified and shifted

Visualizing Aguri Profile Similarities

red green blue

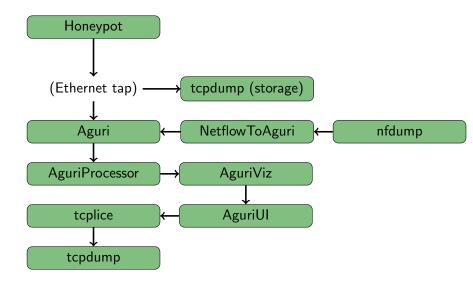
Color Interpretation

- ► Small similarities → bluish colors
- High similarities \rightarrow erythroid colors

Use case - Honeypot operation

- Give the attackers bandwidth to become more attractive
- Avoid them doing real damage and receiving network abuse tickets
- Erythroid colors are not good for the honeypot operator

Implementation



Experiments

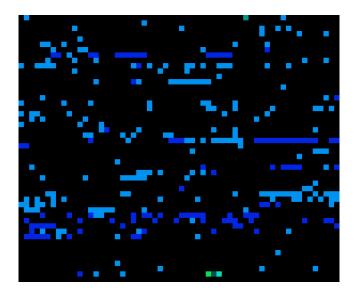
- Setup of a high-interaction honeypot (Linux OS)
- Challenge
 - \blacktriangleright Permit outbound connections \rightarrow make honeypot attractive
 - Stop attacks when real damage is done

Datasets

Operation time	24 hours
Number of addresses	47 523
Used bandwidth	64Kbit/s
Exchanged TCP packets	1 183 419
lpha (seconds)	5
Colors (bit)	24

Experiments

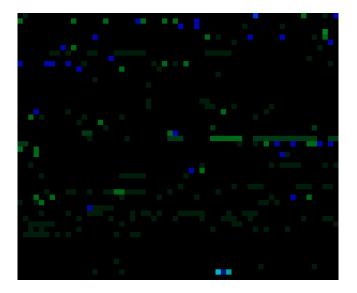
Destination profiles



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Experiments

Source profiles



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Conclusions and Future Work

- Netflow monitoring and visualization is fine grained
- Aggregation parameters must be set in advance
- In this paper we visualize aggregated profiles
- Based on a kernel function to detect similarities
- Which include structural aspects and volume information
- Tested the approach on high-interaction honeypot traffic
- Black colors \rightarrow let attackers play
- ▶ Bluish colors → attacks become more dangerous for the honeypot operator
- \blacktriangleright Erythroid colors \rightarrow it is time to stop the attacks
- Need to improve human interaction features

Questions and Answers

Questions

Acknowledgements

This project is partially supported by the EFIPSANS EU-Project, CSC-SECAN-Lab and SnT. The more we want to acknowledge the National Research Fund Luxembourg, S.E.S.-Astra and RESTENA Luxembourg.