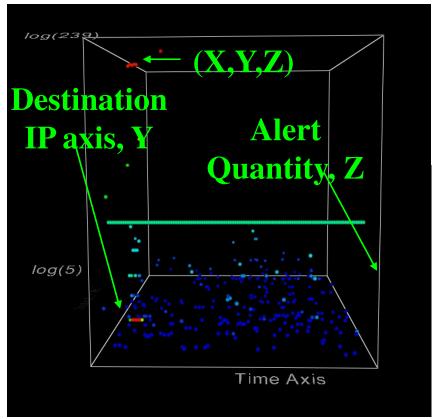
Shahrulniza Musa, PhD Malaysian Institute of Information Technology University Kuala Lumpur, Malaysia

Prof. David J. Parish High Speed Networks Research Group, Electronic and Electrical Engineering Department Loughborough University, United Kingdom

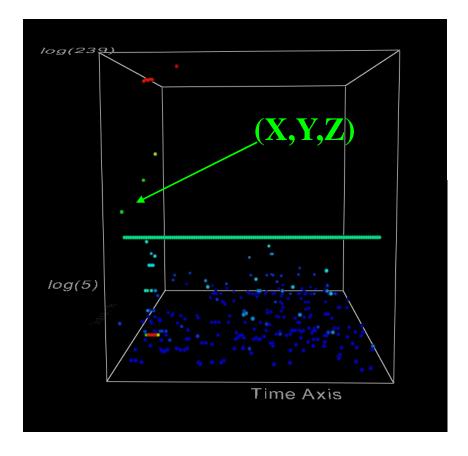
Using Time Series 3D Alert Graph and False Alert Classification to Analyse Snort Alerts


Introduction – Background to the Problem

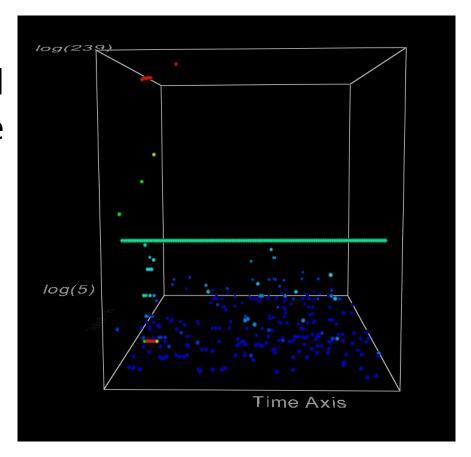
- A lot of alerts
- Most of them are false
- A lot of information

```
[**] [1:1560:6] WEB-MISC /doc/ access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
          04/09-15:19:46.079304 197.218.177.69:16511 -> 172.16.114.50:80
                  TCP TTL:63 TOS:0x0 ID:5357 IpLen:20 DgmLen:298 DF
***AP*** Seq: 0x97531B46 Ack: 0xDADDDD8F Win: 0x7D78 TcpLen: 20
 [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0678][Xref =>
                                    http://www.securityfocus.com/bid/318]
                              [**] [1:1560:6] WEB-MISC /doc/ access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
          04/09-15:19:46.299292 197.218.177.69:16521 -> 172.16.114.50:80
                  TCP TTL:63 TOS:0x0 ID:5377 IpLen:20 DgmLen:362 DF
 ***AP*** Seq: 0xD948F63F Ack: 0x210D8B51 Win: 0x7D78 TcpLen: 20
 [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0678][Xref =>
                                    http://www.securityfocus.com/bid/318]
                              [**] [1:1560:6] WEB-MISC /doc/ access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
          04/09-15:19:46.318748 197.218.177.69:16586 -> 172.16.114.50:80
                  TCP TTL:63 TOS:0x0 ID:5392 IpLen:20 DgmLen:363 DF
 ***AP*** Seq: 0x7C311751 Ack: 0xBD4E2177 Win: 0x7D78 TcpLen: 20
 [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0678][Xref =>
                                    http://www.securityfocus.com/bid/318]
                             [**] [1:1411:10] SNMP public access udp [**]
                   [Classification: Attempted Information Leak] [Priority: 2]
            04/09-15:19:48.253464 192.168.1.30:32770 -> 172.16.112.5:161
               UDP TTL:254 TOS:0x0 ID:35978 IpLen:20 DgmLen:132 DF
 [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0013][Xref =>
             http:][Xref => http://www.securityfocus.com/bid/4089][Xref =>
                                   http://www.securityfocus.com/bid/4088]
```

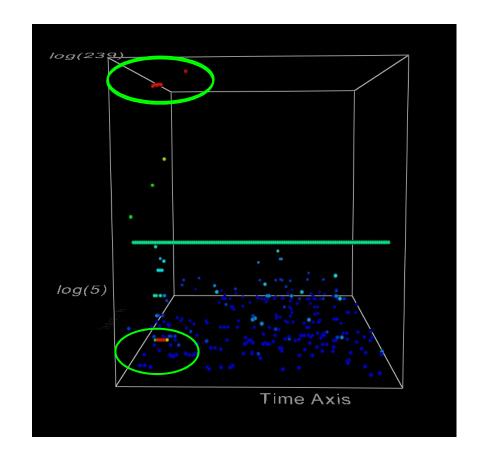
The 3D Time Series AlertGraph


 The time series plot of the quantity of alerts received by a destination IP in a time interval from the pair of source IP address and destination port

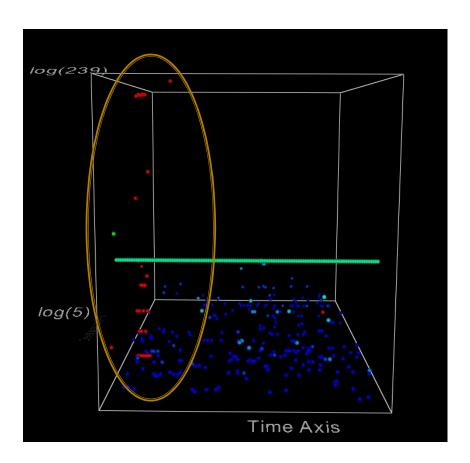
Time axis, X (default time interval=5 mn)


The Data Point - Sphere

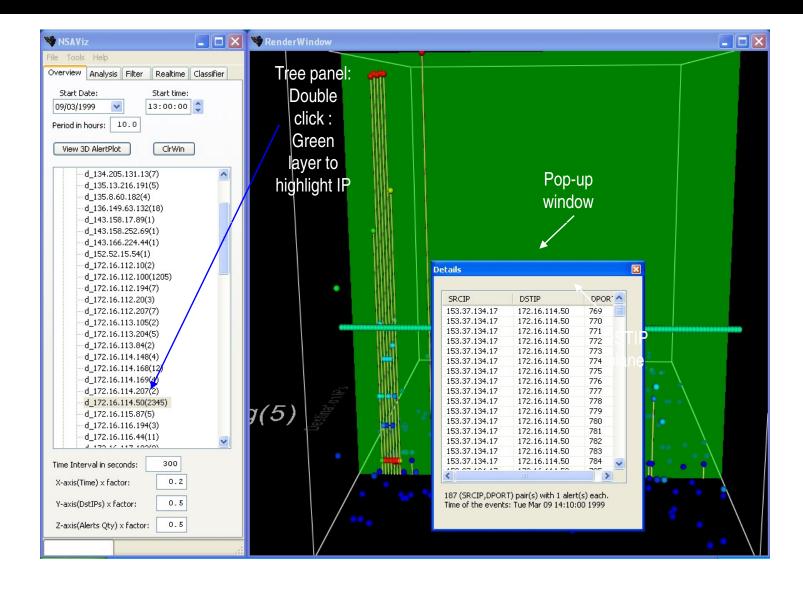
 A coloured sphere means during the time interval X, the quantity of alerts Z were received by the destination host Y from source IP and destination port pair


The Colour

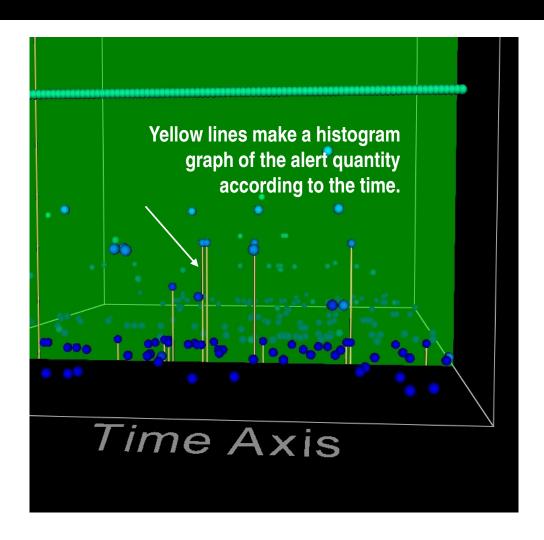
- The colour of the sphere reveals the total quantity of alerts at the data point (sphere) classifier mode : true alerts
- Lowest: Blue
- Highest: Red
- Colour varies from blue to red


Example – without classifier

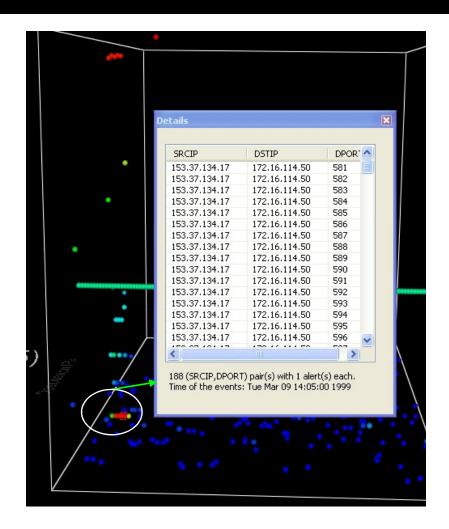
- The red spheres on the top: Many alerts in the interval with a unique source IP and destination port.
- The red spheres on the bottom: A single alert from many source IP and destination port pairs.



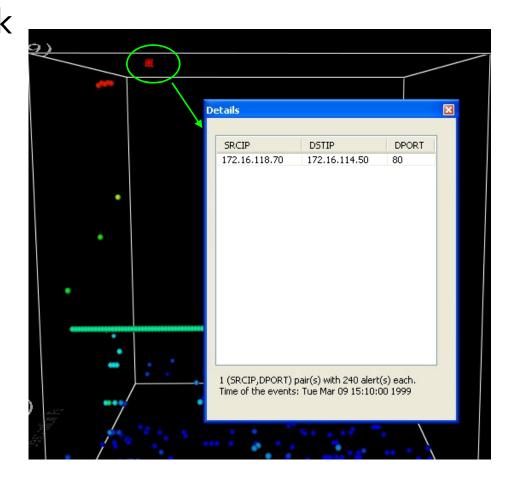
Previous Example with Classifier


 All the red spheres suggested true alerts

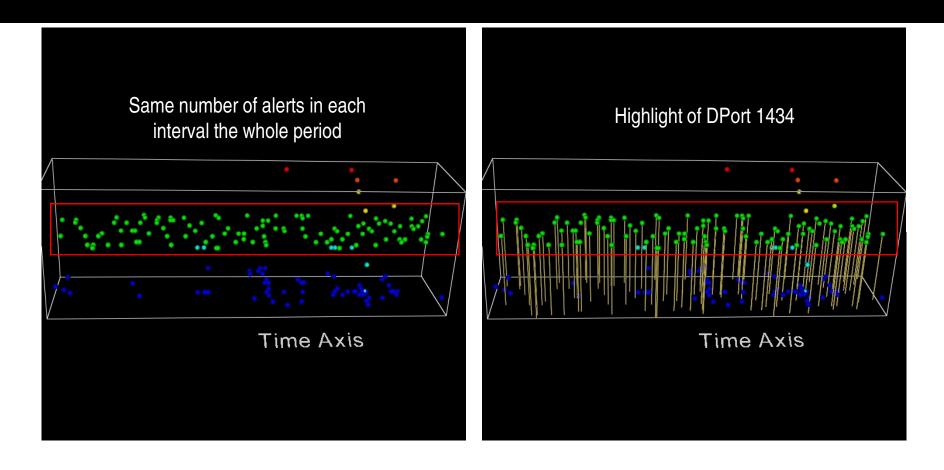
The Interaction



The Interaction


Example: Port Scan

 A unique source IP targeting many destination ports



Example: DOS (BACK)

- Denial of service attack against apache webserver where a client requests a URL containing many backslashes.
- Many alerts from unique (srcip,dport)

Example: Slammer Worm

Destination port 1434 was used in slammer worm propagation.

The Classifier

- Classification tree Algorithm
 - Based on C_{4.5} classification Algorithm
 - Decision tree based on information entropy theory
 - Post-Pruning (to avoid over-fitting)
 - The inputs were generalised
 - Using orange AI: open-source data mining and artificial intelligent module

The Classifier Inputs

Alert attributes	Generalisation
Src / Dst IP address	Local host Foreign host
Src / Dst port	Standard (< 1024) Ephemeral (between 1024 and 4999) Unassigned (> 5000) Unknown
Alert Classtype	Class type as specified by Snort
IP Datagram length	Actual byte value
IP protocol	UDP, TCP, ICMP, Reserve, Other

The Classifier Performance

• Performance Score

	Classification Accuracy	Brier Score	Area under the receiver
	(CA)	(BS)	operating characteristic (ROC) curve (AUC)
Scores	0.9857	0.0265	0.9892

• Confusion Matrix

	Negative (false)	Positive (true)	
	Predicted	Predicted	
Negative (false) (273)	267 (TN=0.9780)	6 (FP=0.0220)	
Positive (true) (288)	5 (FN=0.0174)	283 (TP=0.9826)	

User Evaluation

- Usability Study
 - Neilson [68], 3-5 evaluators can identify 75-80% of all usability problems.
- Usability Problems found
 - Controlling 3D image
 - Suggestions: More training, Navigation control as in google map
 - Crowded GUI in Analysis panel
 - Suggestion: New organisation
 - Suggestion for mouse over information

Analysis of User Evaluation

no		Average	Std dev
A1	Overview	4.67	0.58
В1	Scatter plot	4.67	0.58
B2	Parallel plot	4.67	0.58
Вз	Timeline view	3.67	1.53
В4	Plane view	4.00	1.73
B5	World globe	4.67	0.58
В6	World plane	4.67	0.58
C1	GUI - user friendly	4.33	0.58
C ₂	Interaction	4.67	0.58
C3	Classifier features	4.67	0.58
C ₄	Filter features	4.67	0.58
C5	Real-time	4.00	0.00
C6	Reporting features	4.67	0.58
C ₇	Comparison with similar tool	na	na
C 8	Perform Security tasks	4.67	0.58

Advantages of 3D AlertGraph

- Highlights the true alerts
- Interaction tools for more information
- A huge numbers of alerts can be viewed in single display
- A temporal characteristic of attacks can be discovered

Q&A

Thank you very much